EN

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transient Superdiffusion of Energetic Carriers in Transition Metal Dichalcogenides Visualized by Ultrafast Pump-Probe Microscopy

Yun-Ke Zhou Xiao-Ze Li Qian-Ni Zhou Ren-Hao Xing Yan Zhang Benfeng Bai Hong-Hua Fang and Hong-Bo Sun

Yun-Ke Zhou, Xiao-Ze Li, Qian-Ni Zhou, Ren-Hao Xing, Yan Zhang, Benfeng Bai, Hong-Hua Fang, and Hong-Bo Sun. 2022: Transient Superdiffusion of Energetic Carriers in Transition Metal Dichalcogenides Visualized by Ultrafast Pump-Probe Microscopy. 超快科学, 2022(6). doi: 10.34133/ultrafastscience.0002
引用本文: Yun-Ke Zhou, Xiao-Ze Li, Qian-Ni Zhou, Ren-Hao Xing, Yan Zhang, Benfeng Bai, Hong-Hua Fang, and Hong-Bo Sun. 2022: Transient Superdiffusion of Energetic Carriers in Transition Metal Dichalcogenides Visualized by Ultrafast Pump-Probe Microscopy. 超快科学, 2022(6). doi: 10.34133/ultrafastscience.0002
Yun-Ke Zhou, Xiao-Ze Li, Qian-Ni Zhou, Ren-Hao Xing, Yan Zhang, Benfeng Bai, Hong-Hua Fang, Hong-Bo Sun. 2022: Transient Superdiffusion of Energetic Carriers in Transition Metal Dichalcogenides Visualized by Ultrafast Pump-Probe Microscopy. Ultrafast Science, 2022(6). doi: 10.34133/ultrafastscience.0002
Citation: Yun-Ke Zhou, Xiao-Ze Li, Qian-Ni Zhou, Ren-Hao Xing, Yan Zhang, Benfeng Bai, Hong-Hua Fang, Hong-Bo Sun. 2022: Transient Superdiffusion of Energetic Carriers in Transition Metal Dichalcogenides Visualized by Ultrafast Pump-Probe Microscopy. Ultrafast Science, 2022(6). doi: 10.34133/ultrafastscience.0002

Transient Superdiffusion of Energetic Carriers in Transition Metal Dichalcogenides Visualized by Ultrafast Pump-Probe Microscopy

doi: 10.34133/ultrafastscience.0002
基金项目: 

This work is financially supported by the National Natural Science Foundation of China (no. 62075115) and Tsinghua University Initiative Scientific Research Program.

Transient Superdiffusion of Energetic Carriers in Transition Metal Dichalcogenides Visualized by Ultrafast Pump-Probe Microscopy

Funds: 

This work is financially supported by the National Natural Science Foundation of China (no. 62075115) and Tsinghua University Initiative Scientific Research Program.

  • 摘要: Because of the strong Coulomb interaction and quantum confinement effect, 2-dimensional transition metal dichalcogenides possess a stable excitonic population. To realize excitonic device applications, such as excitonic circuits, switches, and transistors, it is of paramount importance for understanding the tical properties of transition metal dichalcogenides. Furthermore, the strong quantum confinement in 2-dimensional space introduces exotic properties, such as enhanced phonon bottlenecking effect, many-body interaction of excitons, and ultrafast nonequilibrium exciton–exciton annihilation. Exciton diffusion is the primary energy dissipation process and a working horse in excitonic devices. In this work, we investigated time-resolved exciton propagation in monolayer semiconductors of WSe2, MoWSe2, and MoSe2, with a home-built femtosecond pump-probe microscope. We observed ultrafast exciton expansion behavior with an equivalent diffusivity of up to 502 cm2 s−1 at the initial delay time, followed by a slow linear diffusive regime (20.9 cm2 s−1) in the monolayer WSe2. The fast expansion behavior is attributed to energetic carrier-dominated superdiffusive behavior. We found that in the monolayers MoWSe2 and MoSe2, the energetic carrier-induced exciton expansion is much more effective, with diffusivity up to 668 and 2295 cm2 s−1, respectively.However, the “cold” exciton transport is trap limited in MoWSe2 and MoSe2, leading to negative diffusion behavior at later time. Our findings are helpful to better understand the ultrafast nonlinear diffusive behavior in strongly quantum-confined systems. It may be harnessed to break the limit of conventional slow diffusion of excitons for advancing more efficient and ultrafast optoelectronic devices.
  • 加载中
计量
  • 文章访问数:  95
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 修回日期:  2022-10-19
  • 刊出日期:  2022-12-15

目录

    /

    返回文章
    返回