FOLLOWUS
1. RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako,Saitama,Japan,351-0198
2. Tokyo University of Science, 2641 Yamazaki, Noda-, Chiba-ken,shi,Japan,278-8510
3. School of Physics and Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology,Hubei,Wuhan,China,430074
4. Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85,Hamburg,Germany,22607
Published:2021,
Scan QR Code
BING XUE, YUUKI TAMARU, YUXI FU, et al. A Custom-Tailored Multi-TW Optical Electric Field for Gigawatt Soft-X-Ray Isolated Attosecond Pulses. [J]. Ultrafast science, 2021, 2021(2).
BING XUE, YUUKI TAMARU, YUXI FU, et al. A Custom-Tailored Multi-TW Optical Electric Field for Gigawatt Soft-X-Ray Isolated Attosecond Pulses. [J]. Ultrafast science, 2021, 2021(2). DOI: 10.34133/2021/9828026.
Since the first isolated attosecond pulse was demonstrated through high-order harmonics generation (HHG) in 2001
researchers’ interest in the ultrashort time region has expanded. However
one realizes a limitation for related research such as attosecond spectroscopy. The bottleneck is concluded to be the lack of a high-peak-power isolated attosecond pulse source. Therefore
currently
generating an intense attosecond pulse would be one of the highest priority goals. In this paper
we review our recent work of a TW-class parallel three-channel waveform synthesizer for generating a gigawatt-scale soft-X-ray isolated attosecond pulse (IAP) using HHG. By employing several stabilization methods
we have achieved a stable 50 mJ three-channel optical-waveform synthesizer with a peak power at the multi-TW level. This optical-waveform synthesizer is capable of creating a stable intense optical field for generating an intense continuum harmonic beam thanks to the successful stabilization of all the parameters. Furthermore
the precision control of shot-to-shot reproducible synthesized waveforms is achieved. Through the HHG process employing a loose-focusing geometry
an intense shot-to-shot stable supercontinuum (50–70 eV) is generated in an argon gas cell. This continuum spectrum supports an IAP with a transform-limited duration of 170 as and a submicrojoule pulse energy
which allows the generation of a GW-scale IAP. Another supercontinuum in the soft-X-ray region with higher photon energy of approximately 100–130 eV is also generated in neon gas from the synthesizer. The transform-limited pulse duration is 106 as. Thus
the enhancement of HHG output through optimized waveform synthesis is experimentally proved.
M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature, vol. 414, no. 6863, pp. 509–513, 2001
F. Lepine, M. Y. Ivanov, and M. J. J. Vrakking, “Attosecond molecular dynamics: fact or fiction?,” Nature Photonics, vol. 8, no. 3, pp. 195–204, 2014
M. Nisoli, P. Decleva, F. Calegari, A. Palacios, and F. Martín, “Attosecond electron dynamics in molecules,” Chemical Reviews, vol. 117, no. 16, pp. 10760–10825, 2017
F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. de Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martin, and M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science, vol. 346, no. 6207, pp. 336–339, 2014
T. Gaumnitz, A. Jain, Y. Pertot, M. Huppert, I. Jordan, F. Ardana-Lamas, and H. J. Wörner, “Streaking of 43-attosecond soft-x-ray pulses generated by a passively CEP-stable mid-infrared driver,” Optics Express, vol. 25, no. 22, pp. 27506–27518, 2017
G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. de Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science, vol. 314, no. 5798, pp. 443–446, 2006
Z. Chang, “Single attosecond pulse and XUV supercontinuum in the high-order harmonic plateau,” Physical Review A, vol. 70, no. 4, article 043802, 2004
H. Mashiko, S. Gilbertson, M. Chini, X. Feng, C. Yun, H. Wang, S. D. Khan, S. Chen, and Z. Chang, “Extreme ultraviolet supercontinua supporting pulse durations of less than one atomic unit of time,” Optics Letters, vol. 34, no. 21, pp. 3337–3339, 2009
K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, and Z. Chang, “Tailoring a 67 attosecond pulse through advantageous phase-mismatch,” Optics Letters, vol. 37, no. 18, pp. 3891–3893, 2012
F. Silva, S. M. Teichmann, S. L. Cousin, M. Hemmer, and J. Biegert, “Spatiotemporal isolation of attosecond soft x-ray pulses in the water window,” Nature Communications, vol. 6, no. 1, article 6611, 2015
M. Chini, K. Zhao, and Z. Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nature Photonics, vol. 8, no. 3, pp. 178–186, 2014
F. Krausz, and M. I. Stockman, “Attosecond metrology: from electron capture to future signal processing,” Nature Photonics, vol. 8, no. 3, pp. 205–213, 2014
S. Haessler, T. Balčiūnas, G. Fan, L. E. Chipperfield, and A. Baltuška, “Enhanced multi-colour gating for the generation of high-power isolated attosecond pulses,” Scientific Reports, vol. 5, no. 1, article 10084, 2015
P. M. Kraus, M. Zürch, S. K. Cushing, D. M. Neumark, and S. R. Leone, “The ultrafast X-ray spectroscopic revolution in chemical dynamics,” Nature Reviews Chemistry, vol. 2, no. 6, pp. 82–94, 2018
F. Kelkensberg, C. Lefebvre, W. Siu, O. Ghafur, T. T. Nguyen-Dang, O. Atabek, A. Keller, V. Serov, P. Johnsson, M. Swoboda, T. Remetter, A. L’Huillier, S. Zherebtsov, G. Sansone, E. Benedetti, F. Ferrari, M. Nisoli, F. Lépine, M. F. Kling, and M. J. J. Vrakking, “Molecular dissociative ionization and wave-packet dynamics studied using two-color XUV and IR pump-probe spectroscopy,” Physical Review Letters, vol. 103, no. 12, article 123005, 2009
M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature, vol. 419, no. 6909, pp. 803–807, 2002
C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S. W. Huang, K. H. Hong, G. Cerullo, and F. X. Kärtner, “Coherent pulse synthesis: towards sub-cycle optical waveforms,” Laser & Photonics Reviews, vol. 9, no. 2, pp. 129–171, 2015
E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, “Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses,” Nature Communications, vol. 4, no. 1, article 2691, 2013
E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, “Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse,” Physical Review Letters, vol. 104, no. 23, article 233901, 2010
A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Optics Communications, vol. 88, no. 4-6, pp. 437–440, 1992
D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next generation driver for attosecond and laser-plasma physics,” Scientific Reports, vol. 7, no. 1, article 5224, 2017
O. D. Mücke, S. Fang, G. Cirmi, G. M. Rossi, S. H. Chia, H. Ye, Y. Yang, R. Mainz, C. Manzoni, P. Farinello, G. Cerullo, and F. X. Kartner, “Toward waveform nonlinear optics using multimillijoule sub-cycle waveform synthesizers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 5, article 8700712, pp. 1–12, 2015
P. Lan, E. J. Takahashi, and K. Midorikawa, “Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation,” Physical Review A, vol. 82, no. 5, article 053413, 2010
E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, “Nonlinear attosecond metrology by intense isolated attosecond pulses,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 5, article 8800112, pp. 1–12, 2015
L. E. Chipperfield, J. S. Robinson, J. W. G. Tisch, and J. P. Marangos, “Ideal waveform to generate the maximum possible electron recollision energy for any given oscillation period,” Physical Review Letters, vol. 102, no. 6, article 063003, 2009
Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Physical Review Letters, vol. 98, no. 20, article 203901, 2007
P. Lan, P. Lu, W. Cao, Y. Li, and X. Wang, “Isolated sub-100‐as pulse generation via controlling electron dynamics,” Physical Review A, vol. 76, no. 1, article 011402, 2007
S. Haessler, T. Balčiunas, G. Fan, G. Andriukaitis, A. Pugžlys, A. Baltuška, T. Witting, R. Squibb, A. Zaïr, J. W. G. Tisch, J. P. Marangos, and L. E. Chipperfield, “Optimization of quantum trajectories driven by strong-field waveforms,” Physical Review X, vol. 4, no. 2, article 021028, 2014
C. Jin, G. Wang, H. Wei, A. T. Le, and C. D. Lin, “Waveforms for optimal sub-keV high-order harmonics with synthesized two- or three-colour laser fields,” Nature Communications, vol. 5, no. 1, article 4003, 2014
C. Jin, G. Wang, A. T. Le, and C. D. Lin, “Route to optimal generation of soft X-ray high harmonics with synthesized two-color laser pulses,” Scientific Reports, vol. 4, no. 1, article 7067, 2014
B. Xue, Y. Tamaru, Y. Fu, H. Yuan, P. Lan, O. D. Mücke, A. Suda, K. Midorikawa, and E. J. Takahashi, “Fully stabilized multi-TW optical waveform synthesizer: toward gigawatt isolated attosecond pulses,” Science Advances, vol. 6, no. 16, article eaay2802, 2020
C. Iaconis, and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Optics Letters, vol. 23, no. 10, pp. 792–794, 1998
D. J. Kane, and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE Journal of Quantum Electronics, vol. 29, no. 2, pp. 571–579, 1993
A. Baltuška, M. Uiberacker, E. Goulielmakis, R. Kienberger, V. S. Yakovlev, T. Udem, T. W. Hansch, and F. Krausz, “Phase-controlled amplification of few-cycle laser pulses,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, no. 4, pp. 972–989, 2003
E. J. Takahashi, Y. Fu, and K. Midorikawa, “Carrier-envelope phase stabilization of a 16 TW, 10Hz Ti:sapphire laser,” Optics Letters, vol. 40, no. 21, pp. 4835–4838, 2015
H. Schmuck, and O. Strobel, “Stabilization of a fiber-optic Mach-Zehnder-interferometer used as an intensity modulator,” Journal of Optical Communications, vol. 7, no. 3, pp. 86–91, 1986
E. J. Takahashi, Y. Nabekawa, T. Otsuka, M. Obara, and K. Midorikawa, “Generation of highly coherent submicrojoule soft X rays by high-order harmonics,” Physical Review A, vol. 66, no. 2, article 021802, 2002
E. J. Takahashi, Y. Nabekawa, and K. Midorikawa, “Low-divergence coherent soft x-ray source at 13 nm by high-order harmonics,” Applied Physics Letters, vol. 84, no. 1, pp. 4–6, 2004
J. L. Krause, K. J. Schafer, and K. C. Kulander, “High-order harmonic generation from atoms and ions in the high intensity regime,” Physical Review Letters, vol. 68, no. 24, pp. 3535–3538, 1992
K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic cutoff,” Physical Review Letters, vol. 70, no. 11, pp. 1599–1602, 1993
P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Physical Review Letters, vol. 71, no. 13, pp. 1994–1997, 1993
H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Applied Physics B, vol. 69, no. 4, pp. 327–332, 1999
M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Physical Review A, vol. 49, no. 3, pp. 2117–2132, 1994
P. Lan, P. Lu, Q. Li, F. Li, W. Hong, and Q. Zhang, “Macroscopic effects for quantum control of broadband isolated attosecond pulse generation with a two-color field,” Physical Review A, vol. 79, no. 4, article 043413, 2009
D. Charalambidis, V. Chikan, E. Cormier, P. Dombi, J. A. Fülöp, C. Janáky, S. Kahaly, M. Kalashnikov, C. Kamperidis, S. Kühn, F. Lepine, A. L’Huillier, R. Lopez-Martens, S. Mondal, K. Osvay, L. Óvári, P. Rudawski, G. Sansone, P. Tzallas, Z. Várallyay, and K. Varjú, “The Extreme Light Infrastructure—Attosecond Light Pulse Source (ELI-ALPS) Project,” Progress in Ultrafast Intense Laser Science XIII. Springer Series in Chemical Physics, K. Yamanouchi, W. Hill III, and G. Paulus, Eds., Springer, Cham, pp. 181–218, 2017
H.-S. Kang, and I. S. Ko, “Attosecond XFEL for pump–probe experiments,” Nature Photonics, vol. 14, no. 1, pp. 7–8, 2020
S. Serkez, G. Geloni, S. Tomin, G. Feng, E. V. Gryzlova, A. N. Grum-Grzhimailo, and M. Meyer, “Overview of options for generating high-brightness attosecond X-ray pulses at free-electron lasers and applications at the European XFEL,” Journal of Optics, vol. 20, no. 2, article 024005, 2018
C. H. Shim, Y. W. Parc, and D. E. Kim, “Effect of high slice energy spread of an electron beam on the generation of isolated, terawatt, attosecond x-ray free-electron laser pulse,” Scientific Reports, vol. 10, no. 1, article 1312, 2020
T. Tajima, and J. M. Dawson, “Laser electron accelerator,” Physical Review Letters, vol. 43, no. 4, pp. 267–270, 1979
A. Buck, M. Nicolai, K. Schmid, C. M. S. Sears, A. Sävert, J. M. Mikhailova, F. Krausz, M. C. Kaluza, and L. Veisz, “Real-time observation of laser-driven electron acceleration,” Nature Physics, vol. 7, no. 7, pp. 543–548, 2011
S. W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kärtner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nature Photonics, vol. 5, no. 8, pp. 475–479, 2011
0
Views
0
Downloads
0
CSCD
0
Scopus
Publicity Resources
Related Articles
Related Author
Related Institution