FOLLOWUS
1. The Institute of Optics, University of Rochester,NY,USA,14627
2. Department of Physics, Capital Normal University,Beijing,China,100048
3. ITMO University,. Petersburg,St,Russia,199034
Published:2021,
Scan QR Code
YIWEN E, LIANGLIANG ZHANG, ANTON TCYPKIN, et al. Broadband THz Sources from Gases to Liquids. [J]. Ultrafast science, 2021, 2021(1).
YIWEN E, LIANGLIANG ZHANG, ANTON TCYPKIN, et al. Broadband THz Sources from Gases to Liquids. [J]. Ultrafast science, 2021, 2021(1). DOI: 10.34133/2021/9892763.
Matters are generally classified within four states: solid
liquid
gas
and plasma. Three of the four states of matter (solid
gas
and plasma) have been used for THz wave generation with short laser pulse excitation for decades
including the recent vigorous development of THz photonics in gases (air plasma). However
the demonstration of THz generation from liquids was conspicuously absent. It is well known that water
the most common liquid
is a strong absorber in the far infrared range. Therefore
liquid water has historically been sworn off as a source for THz radiation. Recently
broadband THz wave generation from a flowing liquid target has been experimentally demonstrated through laser-induced microplasma. The liquid target as the THz source presents unique properties. Specifically
liquids have the comparable material density to that of solids
meaning that laser pulses over a certain area will interact with three orders more molecules than an equivalent cross-section of gases. In contrast with solid targets
the fluidity of liquid allows every laser pulse to interact with a fresh area on the target
meaning that material damage or degradation is not an issue with the high-repetition rate intense laser pulses. These make liquids very promising candidates for the investigation of high-energy-density plasma
as well as the possibility of being the next generation of THz sources.
H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W. Falcone, “Subpicosecond, electromagnetic pulses from intense laser-plasma interaction,” Physical Review Letters, vol. 71, no. 17, pp. 2725–2728, 1993
H. Hamster, A. Sullivan, S. Gordon, and R. W. Falcone, “Short-pulse terahertz radiation from high-intensity-laser-produced plasmas,” Physical Review E, vol. 49, no. 1, pp. 671–677, 1994
D. J. Cook, and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Optics Letters, vol. 25, no. 16, pp. 1210–1212, 2000
M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguère, A. Lotti, A. Couairon, F. Légaré, T. Ozaki, D. Faccio, and R. Morandotti, “Wavelength scaling of terahertz generation by gas ionization,” Physical Review Letters, vol. 110, no. 25, p. 253901, 2013
X. Xie, J. Dai, and X. C. Zhang, “Coherent control of THz wave generation in ambient air,” Physical Review Letters, vol. 96, no. 7, p. 075005, 2006
J. Dai, J. Liu, and X. C. Zhang, “Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 1, pp. 183–190, 2011
F. Jahangiri, M. Hashida, T. Nagashima, S. Tokita, M. Hangyo, and S. Sakabe, “Intense terahertz emission from atomic cluster plasma produced by intense femtosecond laser pulses,” Applied Physics Letters, vol. 99, no. 26, p. 261503, 2011
T. Nagashima, H. Hirayama, K. Shibuya, M. Hangyo, M. Hashida, S. Tokita, and S. Sakabe, “Terahertz pulse radiation from argon clusters,” Optics Express, vol. 17, no. 11, pp. 8907–8912, 2009
K. Mori, M. Hashida, T. Nagashima, D. Li, K. Teramoto, Y. Nakamiya, S. Inoue, and S. Sakabe, “Directional linearly polarized terahertz emission from argon clusters irradiated by noncollinear double-pulse beams,” Applied Physics Letters, vol. 111, no. 24, p. 241107, 2017
Q. Jin, Y. E, K. Williams, J. Dai, and X. C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Applied Physics Letters, vol. 111, no. 7, p. 071103, 2017
I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and G. R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nature Communications, vol. 8, no. 1, p. 1184, 2017
E. Yiwen, Q. Jin, A. Tcypkin, and X. C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Applied Physics Letters, vol. 113, no. 18, p. 181103, 2018
Q. Jin, J. M. Dai, E. Yiwen, and X. C. Zhang, “Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields,” Applied Physics Letters, vol. 113, no. 26, p. 261101, 2018
A. N. Tcypkin, E. A. Ponomareva, S. E. Putilin, S. V. Smirnov, S. A. Shtumpf, M. V. Melnik, Y. E, S. A. Kozlov, and X. C. Zhang, “Flat liquid jet as a highly efficient source of terahertz radiation,” Optics Express, vol. 27, no. 11, p. 15485, 2019
L.-L. Zhang, W.-M. Wang, T. Wu, S. J. Feng, K. Kang, C. L. Zhang, Y. Zhang, Y. T. Li, Z. M. Sheng, and X. C. Zhang, “Strong terahertz radiation from a liquid-water line,” Physical Review Applied, vol. 12, no. 1, p. 014005, 2019
A. V. Balakin, J.-L. Coutaz, V. A. Makarov, I. A. Kotelnikov, Y. Peng, P. M. Solyankin, Y. Zhu, and A. P. Shkurinov, “Terahertz wave generation from liquid nitrogen,” Photonics Research, vol. 7, no. 6, p. 678, 2019
A. Gopal, P. Singh, S. Herzer, A. Reinhard, A. Schmidt, U. Dillner, T. May, H. G. Meyer, W. Ziegler, and G. G. Paulus, “Characterization of 700 μJ T rays generated during high-power laser solid interaction,” Optics Letters, vol. 38, no. 22, pp. 4705–4707, 2013
G. Liao, Y. Li, H. Liu, G. G. Scott, D. Neely, Y. Zhang, B. Zhu, Z. Zhang, C. Armstrong, E. Zemaityte, P. Bradford, P. G. Huggard, D. R. Rusby, P. McKenna, C. M. Brenner, N. C. Woolsey, W. Wang, Z. Sheng, and J. Zhang, “Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils,” Proceedings of the National Academy of Sciences, vol. 116, no. 10, pp. 3994–3999, 2019
A. Woldegeorgis, T. Kurihara, M. Almassarani, B. Beleites, R. Grosse, F. Ronneberger, and A. Gopal, “Multi-MV/cm longitudinally polarized terahertz pulses from laser–thin foil interaction,” Optica, vol. 5, no. 11, p. 1474, 2018
G.-Q. Liao, Y.-T. Li, Y.-H. Zhang, H. Liu, X. L. Ge, S. Yang, W. Q. Wei, X. H. Yuan, Y. Q. Deng, B. J. Zhu, Z. Zhang, W. M. Wang, Z. M. Sheng, L. M. Chen, X. Lu, J. L. Ma, X. Wang, and J. Zhang, “Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions,” Physical Review Letters, vol. 116, no. 20, p. 205003, 2016
A. W. Miziolek, V. Palleschi, and I. Schechter Laser Induced Breakdown Spectroscopy, Cambridge University Press, 2006
F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, “Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges,” ISRN Spectroscopy, vol. 2012, –12, 2012
B. Kearton, and Y. Mattley, “Sparking new applications,” Nature Photonics, vol. 2, no. 9, pp. 537–540, 2008
S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, “Femtosecond x rays from laser-plasma accelerators,” Reviews of Modern Physics, vol. 85, no. 1, pp. 1–48, 2013
J. Yoshii, C. H. Lai, T. Katsouleas, C. Joshi, and W. B. Mori, “Radiation from Cerenkov wakes in a magnetized plasma,” Physical Review Letters, vol. 79, no. 21, pp. 4194–4197, 1997
D. Kuk, Y. J. Yoo, E. W. Rosenthal, N. Jhajj, H. M. Milchberg, and K. Y. Kim, “Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air,” Applied Physics Letters, vol. 108, no. 12, p. 121106, 2016
T. I. Oh, Y. J. Yoo, Y. S. You, and K. Y. Kim, “Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling,” Applied Physics Letters, vol. 105, no. 4, p. 041103, 2014
X. C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nature Photonics, vol. 11, no. 1, pp. 16–18, 2017
J. Liu, and X. C. Zhang, “Terahertz-radiation-enhanced emission of fluorescence from gas plasma,” Physical Review Letters, vol. 103, no. 23, p. 235002, 2009
J. Liu, J. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nature Photonics, vol. 4, no. 9, pp. 627–631, 2010
B. Clough, J. Liu, and X. C. Zhang, ““All air-plasma” terahertz spectroscopy,” Optics Letters, vol. 36, no. 13, pp. 2399–2401, 2011
J. Liu, B. Clough, and X. C. Zhang, “Enhancement of photoacoustic emission through terahertz-field-driven electron motions,” Physical Review E, vol. 82, no. 6, p. 066602, 2010
B. Clough, J. Liu, and X. C. Zhang, “Laser-induced photoacoustics influenced by single-cycle terahertz radiation,” Optics Letters, vol. 35, no. 21, pp. 3544–3546, 2010
F. Buccheri, and X.-C. Zhang, “Terahertz emission from laser-induced microplasma in ambient air,” Optica, vol. 2, no. 4, p. 366, 2015
C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Physical Review Letters, vol. 98, no. 23, p. 235002, 2007
J. Dai, N. Karpowicz, and X. C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Physical Review Letters, vol. 103, no. 2, p. 023001, 2009
H. Wen, and A. M. Lindenberg, “Coherent terahertz polarization control through manipulation of electron trajectories,” Physical Review Letters, vol. 103, no. 2, p. 023902, 2009
K.-Y. Kim, “Generation of coherent terahertz radiation in ultrafast laser-gas interactions,” Physics of Plasmas, vol. 16, no. 5, p. 056706, 2009
K.-Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Optics Express, vol. 15, no. 8, pp. 4577–4584, 2007
K.-Y. Kim, A. Taylor, J. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser- gas interactions,” Nature Photonics, vol. 2, no. 10, pp. 605–609, 2008
N. Karpowicz, and X.-C. Zhang, “Coherent terahertz echo of tunnel ionization in gases,” Physical Review Letters, vol. 102, no. 9, p. 093001, 2009
J. Dai, X. Xie, and X. C. Zhang, “Detection of broadband terahertz waves with a laser-induced plasma in gases,” Physical Review Letters, vol. 97, no. 10, p. 103903, 2006
N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X. C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”,” Applied Physics Letters, vol. 92, no. 1, p. 011131, 2008
Q. Wu, and X. C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Applied Physics Letters, vol. 70, no. 14, pp. 1784–1786, 1997
Y. Chen, M. Yamaguchi, M. Wang, and X. C. Zhang, “Terahertz pulse generation from noble gases,” Applied Physics Letters, vol. 91, no. 25, p. 251116, 2007
G. Rodriguez, “Scaling behavior of ultrafast two-color terahertz generation in plasma gas targets: energy and pressure dependence,” Optics Express, vol. 18, no. 14, p. 15130, 2010
S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. . F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics, vol. 22, no. 1, pp. 1–53, 2012
A. Sagisaka, H. Daido, S. Nashima, S. Orimo, K. Ogura, M. Mori, A. Yogo, J. Ma, I. Daito, A. S. Pirozhkov, S. V. Bulanov, T. Z. Esirkepov, K. Shimizu, and M. Hosoda, “Simultaneous generation of a proton beam and terahertz radiation in high-intensity laser and thin-foil interaction,” Applied Physics B, vol. 90, no. 3-4, pp. 373–377, 2008
S. Feng, L. Dong, T. Wu, Y. Tan, R. Zhang, L. Zhang, C. Zhang, and Y. Zhao, “Terahertz wave emission from water lines,” Chinese Optics Letters, vol. 18, no. 2, p. 023202, 2020
Q. Jin, E. Yiwen, S. Gao, and X. C. Zhang, “Preference of subpicosecond laser pulses for terahertz wave generation from liquids,” Advanced Photonics, vol. 2, no. 1, 2020
A. Ismagilov, E. Ponomareva, M. Zhukova, S. E. Putilin, B. A. Nasedkin, and A. N. Tcypkin, “Liquid jet-based broadband terahertz radiation source,” Optical Engineering, vol. 60, no. 8, 2021
F. Williams, S. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” The Journal of Chemical Physics, vol. 64, no. 4, pp. 1549–1554, 1976
D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser UV radiation,” Chemical Physics, vol. 77, no. 1, pp. 131–143, 1983
R. A. Crowell, and D. M. Bartels, “Multiphoton ionization of liquid water with 3.0−5.0 eV photons,” The Journal of Physical Chemistry, vol. 100, no. 45, pp. 17940–17949, 1996
L. Malmqvist, L. Rymell, and H. M. Hertz, “Droplet-target laser-plasma source for proximity x-ray lithography,” Applied Physics Letters, vol. 68, no. 19, pp. 2627–2629, 1996
M. Berglund, L. Rymell, H. M. Hertz, and T. Wilhein, “Cryogenic liquid-jet target for debris-free laser-plasma soft x-ray generation,” Review of Scientific Instruments, vol. 69, no. 6, pp. 2361–2364, 1998
K. M. George, J. T. Morrison, S. Feister, G. K. Ngirmang, J. R. Smith, A. J. Klim, J. Snyder, D. Austin, W. Erbsen, K. D. Frische, J. Nees, C. Orban, E. A. Chowdhury, and W. M. Roquemore, “High-repetition-rate (≥ kHz) targets and optics from liquid microjets for high-intensity laser–plasma interactions,” High Power Laser Science and Engineering, vol. 7, article E50, 2019
L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chemical Physics Letters, vol. 240, no. 4, pp. 330–333, 1995
C. Ronne, L. Thrane, P. O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” The Journal of Chemical Physics, vol. 107, no. 14, pp. 5319–5331, 1997
T. Wang, P. Klarskov, and P. U. Jepsen, “Ultrabroadband THz time-domain spectroscopy of a free-flowing water film,” IEEE Transactions on Terahertz Science and Technology, vol. 4, no. 4, pp. 425–431, 2014
S. L. Chin Femtosecond Laser Filamentation, Springer, 2010
S. Stumpf, E. Ponomareva, A. Tcypkin, S. Putilin, A. Korolev, and S. Kozlov, “Temporal field and frequency spectrum of intense femtosecond radiation dynamics in the process of plasma formation in a dielectric medium,” Laser Physics, vol. 29, no. 12, p. 124014, 2019
E. A. Ponomareva, S. A. Stumpf, A. N. Tcypkin, and S. A. Kozlov, “Impact of laser-ionized liquid nonlinear characteristics on the efficiency of terahertz wave generation,” Optics Letters, vol. 44, no. 22, pp. 5485–5488, 2019
J. Samios, U. Mittag, and T. Dorfmüller, “The far infrared absorption spectrum of liquid nitrogen,” Molecular Physics, vol. 56, no. 3, pp. 541–556, 1985
J. G. Leidenfrost De aquae communis nonnullis qualitatibus tractatus, Ovenius, 1756
B. S. Gottfried, C. J. Lee, and K. J. Bell, “The Leidenfrost phenomenon: film boiling of liquid droplets on a flat plate,” International Journal of Heat and Mass Transfer, vol. 9, no. 11, pp. 1167–1188, 1966
E. Yiwen, Y. Cao, F. Ling, and X. C. Zhang, “Flowing cryogenic liquid target for terahertz wave generation,” AIP Advances, vol. 10, no. 10, p. 105119, 2020
O. Hemberg, M. Otendal, and H. M. Hertz, “Liquid-metal-jet anode electron-impact x-ray source,” Applied Physics Letters, vol. 83, no. 7, pp. 1483–1485, 2003
D. H. Larsson, P. A. Takman, U. Lundström, A. Burvall, and H. M. Hertz, “A 24 keV liquid-metal-jet x-ray source for biomedical applications,” Review of Scientific Instruments, vol. 82, no. 12, p. 123701, 2011
E. Espes, T. Andersson, F. Bjornsson, C. Gratorp, B. A. M. Hansson, O. Hemberg, G. Johansson, J. Kronstedt, M. Otendal, T. Tuohimaa, and P. Takman, “Liquid-metal-jet x-ray tube technology and tomography applications,” Digital Imaging XVIII, p. 7, 2015
Y. Cao, Y. E, P. Huang, and X. C. Zhang, “Broadband terahertz wave emission from liquid metal,” Applied Physics Letters, vol. 117, no. 4, 2020
Y.-S. Lee Principles of Terahertz Science and Technology, Springer Science & Business Media, 2009
L. R. Snyder, “Classification of the solvent properties of common liquids,” Journal of Chromatography A, vol. 92, no. 2, pp. 223–230, 1974
M. Berglund, L. Rymell, and H. M. Hertz, “Ultraviolet prepulse for enhanced x-ray emission and brightness from droplet-target laser plasmas,” Applied Physics Letters, vol. 69, no. 12, pp. 1683–1685, 1996
M. Anand, S. Kahaly, G. Ravindra Kumar, M. Krishnamurthy, A. S. Sandhu, and P. Gibbon, “Enhanced hard x-ray emission from microdroplet preplasma,” Applied Physics Letters, vol. 88, no. 18, p. 181111, 2006
E. A. Ponomareva, A. N. Tcypkin, S. V. Smirnov, S. E. Putilin, E. Yiwen, S. A. Kozlov, and X. C. Zhang, “Double-pump technique–one step closer towards efficient liquid-based THz sources,” Optics Express, vol. 27, no. 22, p. 32855, 2019
E. A. Ponomareva, A. O. Ismagilov, S. E. Putilin, A. N. Tsypkin, S. A. Kozlov, and X. C. Zhang, “Varying pre-plasma properties to boost terahertz wave generation in liquids,” Communications on Physics, vol. 4, no. 1, article 4, 2021
H.-H. Huang, T. Nagashima, W.-H. Hsu, S. Juodkazis, and K. Hatanaka, “Dual THz wave and X-ray generation from a water film under femtosecond laser excitation,” Nanomaterials (Basel, Switzerland), vol. 8, no. 7, p. 523, 2018
E. Yiwen, Q. Jin, and X. C. Zhang, “Enhancement of terahertz emission by a preformed plasma in liquid water,” Applied Physics Letters, vol. 115, no. 10, p. 101101, 2019
P. M. Solyankin, B. V. Lakatosh, M. S. Krivokorytov, I. P. Tsygvintsev, A. S. Sinko, I. A. Kotelnikov, V. A. Makarov, J. L. Coutaz, V. V. Medvedev, and A. P. Shkurinov, “Single free-falling droplet of liquid metal as a source of directional terahertz radiation,” Physical Review Applied, vol. 14, no. 3, p. 034033, 2020
J. Kerr, “XL. A new relation between electricity and light: Dielectrified media birefringent,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 50, no. 332, pp. 337–348, 1875
J. Kerr, “XLIII. On rotation of the plane of polarization by reflection from the pole of a magnet,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 3, no. 19, pp. 321–343, 1877
M. C. Hoffmann, N. C. Brandt, H. Y. Hwang, K. L. Yeh, and K. A. Nelson, “Terahertz Kerr effect,” Applied Physics Letters, vol. 95, no. 23, p. 231105, 2009
F. Perakis, L. de Marco, A. Shalit, F. Tang, Z. R. Kann, T. D. Kühne, R. Torre, M. Bonn, and Y. Nagata, “Vibrational spectroscopy and dynamics of water,” Chemical Reviews, vol. 116, no. 13, pp. 7590–7607, 2016
H. Zhao, Y. Tan, L. Zhang, R. Zhang, M. Shalaby, C. Zhang, Y. Zhao, and X. C. Zhang, “Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz- induced transient birefringence,” Light: Science & Applications, vol. 9, no. 1, p. 136, 2020
R. W. Boyd Nonlinear Optics, Academic press, 2020
W. Demtröder Laser Spectroscopy: vol. 2: Experimental Techniques, Springer Science & Business Media, 2008
M. Levenson Introduction to Nonlinear Laser Spectroscopy 2e, Elsevier, 2012
H. Zhao, Y. Tan, R. Zhang, Y. Zhao, C. Zhang, and L. Zhang, “Anion–water hydrogen bond vibration revealed by the terahertz Kerr effect,” Optics Letters, vol. 46, no. 2, pp. 230–233, 2021
I. A. Heisler, and S. R. Meech, “Low-frequency modes of aqueous alkali halide solutions: glimpsing the hydrogen bonding vibration,” Science, vol. 327, no. 5967, pp. 857–860, 2010
D.-Y. Wu, S. Duan, X.-M. Liu, Y. C. Xu, Y. X. Jiang, B. Ren, X. Xu, S. H. Lin, and Z. Q. Tian, “Theoretical study of binding interactions and vibrational Raman spectra of water in hydrogen-bonded anionic complexes: (H2O)n- (n =2 and 3), H2O···X-(X = F, Cl, Br, and I), and H2O···M- (M = Cu, Ag, and Au),” The Journal of Physical Chemistry A, vol. 112, no. 6, pp. 1313–1321, 2008
A. V. Grosse, “Surface tension of the alkali metals from the melting point to the critical region,” Journal of Inorganic and Nuclear Chemistry, vol. 30, no. 5, pp. 1169–1174, 1968
V. Y. Prokhorenko, V. V. Roshchupkin, M. A. Pokrasin, S. V. Prokhorenko, and V. V. Kotov, “Liquid gallium: potential uses as a heat-transfer agent,” High Temperature, vol. 38, no. 6, pp. 954–968, 2000
D. White, “The surface tensions of indium and cadmium,” Metallurgical and Materials Transactions B, vol. 3, no. 7, pp. 1933–1936, 1972
0
Views
0
Downloads
0
CSCD
0
Scopus
Publicity Resources
Related Articles
Related Author
Related Institution