FOLLOWUS
a State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, Chinab University of Chinese Academy of Sciences, Beijing 100049, Chinac School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, Chinad School of Science, East China University of Technology,Nanchang,China,330013
Published:2022,
Scan QR Code
Zhihao Zhang, Fangbo Zhang, Bo Xu, Hongqiang Xie, Botao Fu, Xu Lu, Ning Zhang, Shupeng Yu, Jinping Yao, Ya Cheng, Zhizhan Xu. 2022: High-Sensitivity Gas Detection with Air-Lasing-Assisted Coherent Raman Spectroscopy. 超快科学, 2022(2).
Zhihao Zhang, Fangbo Zhang, Bo Xu, Hongqiang Xie, Botao Fu, Xu Lu, Ning Zhang, Shupeng Yu, Jinping Yao, Ya Cheng, Zhizhan Xu. 2022: High-Sensitivity Gas Detection with Air-Lasing-Assisted Coherent Raman Spectroscopy. Ultrafast Science, 2022(2).
Zhihao Zhang, Fangbo Zhang, Bo Xu, Hongqiang Xie, Botao Fu, Xu Lu, Ning Zhang, Shupeng Yu, Jinping Yao, Ya Cheng, Zhizhan Xu. 2022: High-Sensitivity Gas Detection with Air-Lasing-Assisted Coherent Raman Spectroscopy. 超快科学, 2022(2). DOI: 10.34133/2022/9761458
Zhihao Zhang, Fangbo Zhang, Bo Xu, Hongqiang Xie, Botao Fu, Xu Lu, Ning Zhang, Shupeng Yu, Jinping Yao, Ya Cheng, Zhizhan Xu. 2022: High-Sensitivity Gas Detection with Air-Lasing-Assisted Coherent Raman Spectroscopy. Ultrafast Science, 2022(2). DOI: 10.34133/2022/9761458
Remote or standoff detection of greenhouse gases
air pollutants
and biological agents with innovative ultrafast laser technology attracts growing interests in recent years. Hybrid femtosecond/picosecond coherent Raman spectroscopy is considered as one of the most versatile techniques due to its great advantages in terms of detection sensitivity and chemical specificity. However
the simultaneous requirement for the femtosecond pump and the picosecond probe increases the complexity of optical system. Herein
we demonstrate that air lasing naturally created inside a filament can serve as an ideal light source to probe Raman coherence excited by the femtosecond pump
producing coherent Raman signal with molecular vibrational signatures. The combination of pulse self-compression effect and air lasing action during filamentation improves Raman excitation efficiency and greatly simplifies the experimental setup. The air-lasing-assisted Raman spectroscopy was applied to quantitatively detect greenhouse gases mixed in air
and it was found that the minimum detectable concentrations of CO2 and SF6 can reach 0.1% and 0.03%
respectively. The ingenious designs
especially the optimization of pump-seed delay and the choice of perpendicular polarization
ensure a high detection sensitivity and signal stability. Moreover
it is demonstrated that this method can be used for simultaneously measuring CO2 and SF6 gases and distinguishing 12CO2 and 13CO2. The developed scheme provides a new route for high-sensitivity standoff detection and combustion diagnosis.
Remote or standoff detection of greenhouse gases
air pollutants
and biological agents with innovative ultrafast laser technology attracts growing interests in recent years. Hybrid femtosecond/picosecond coherent Raman spectroscopy is considered as one of the most versatile techniques due to its great advantages in terms of detection sensitivity and chemical specificity. However
the simultaneous requirement for the femtosecond pump and the picosecond probe increases the complexity of optical system. Herein
we demonstrate that air lasing naturally created inside a filament can serve as an ideal light source to probe Raman coherence excited by the femtosecond pump
producing coherent Raman signal with molecular vibrational signatures. The combination of pulse self-compression effect and air lasing action during filamentation improves Raman excitation efficiency and greatly simplifies the experimental setup. The air-lasing-assisted Raman spectroscopy was applied to quantitatively detect greenhouse gases mixed in air
and it was found that the minimum detectable concentrations of CO2 and SF6 can reach 0.1% and 0.03%
respectively. The ingenious designs
especially the optimization of pump-seed delay and the choice of perpendicular polarization
ensure a high detection sensitivity and signal stability. Moreover
it is demonstrated that this method can be used for simultaneously measuring CO2 and SF6 gases and distinguishing 12CO2 and 13CO2. The developed scheme provides a new route for high-sensitivity standoff detection and combustion diagnosis.
Air lasing Femtosecond laser filamentation Isotopic identification Multi-component detection Raman Spectroscopy
Air lasing Femtosecond laser filamentation Isotopic identification Multi-component detection Raman Spectroscopy
Nie, Z., Nambu, N., Marsh, K.A. et al. Bidirectional Cascaded Superfluorescent Lasing in Air Enabled by Resonant Third Harmonic Photon Exchange from Nitrogen to Argon. Physical Review Letters, 2024, 133(6): 063201. DOI:10.1103/PhysRevLett.133.063201.
Nie, Z., Nambu, N., Marsh, K.A. et al. Bidirectional Cascaded Superfluorescent Lasing in Air Enabled by Resonant Third Harmonic Photon Exchange from Nitrogen to Argon. Physical Review Letters, 2024, 133(6): 063201. DOI:10.1103/PhysRevLett.133.063201.
Wang, K., Mei, H., Gao, J. et al. Optical free induction decay emission carrying orbit angular momentum from ionic nitrogen enabled by multiple-photon resonance. Chinese Optics Letters, 2024, 22(6): 063201. DOI:10.3788/COL202422.063201.
Wang, K., Mei, H., Gao, J. et al. Optical free induction decay emission carrying orbit angular momentum from ionic nitrogen enabled by multiple-photon resonance. Chinese Optics Letters, 2024, 22(6): 063201. DOI:10.3788/COL202422.063201.
Ji, L., Wang, W., Tian, Y. et al. Physics and Applications of Superintense and Ultrafast Lasers | [超 强 超 快 激 光 物 理 与 前 沿 应 用]. Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51(11): 1101003. DOI:10.3788/CJL240635.
Ji, L., Wang, W., Tian, Y. et al. Physics and Applications of Superintense and Ultrafast Lasers | [超 强 超 快 激 光 物 理 与 前 沿 应 用]. Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51(11): 1101003. DOI:10.3788/CJL240635.
Qin, S., Zhou, C., Mei, H. et al. Comparative study of the multiple wavelength lasing of nitrogen ions: the role of vibrational level-dependent photoionization. Optics Letters, 2024, 49(9): 2421-2424. DOI:10.1364/OL.517496.
Qin, S., Zhou, C., Mei, H. et al. Comparative study of the multiple wavelength lasing of nitrogen ions: the role of vibrational level-dependent photoionization. Optics Letters, 2024, 49(9): 2421-2424. DOI:10.1364/OL.517496.
Wu, Y., Zhang, N., Lu, X. et al. Measurement of Carbon Dioxide Isotopes with Air-Lasing-Based Coherent Raman Spectroscopy. Journal of Physical Chemistry Letters, 2024, 15(11): 2944-2950. DOI:10.1021/acs.jpclett.3c03484.
Wu, Y., Zhang, N., Lu, X. et al. Measurement of Carbon Dioxide Isotopes with Air-Lasing-Based Coherent Raman Spectroscopy. Journal of Physical Chemistry Letters, 2024, 15(11): 2944-2950. DOI:10.1021/acs.jpclett.3c03484.
Mei, H., Jiang, H., Houard, A. et al. Fluorescence and lasing of neutral nitrogen molecules inside femtosecond laser filaments in air: mechanism and applications. Physical Chemistry Chemical Physics, 2024. DOI:10.1039/d4cp01626b.
Mei, H., Jiang, H., Houard, A. et al. Fluorescence and lasing of neutral nitrogen molecules inside femtosecond laser filaments in air: mechanism and applications. Physical Chemistry Chemical Physics, 2024. DOI:10.1039/d4cp01626b.
Xu, L., Zhou, C., Fan, G. et al. Pump-laser-wavelength dependence of population inversion in N2+. Physical Review A, 2024, 109(1): 013518. DOI:10.1103/PhysRevA.109.013518.
Xu, L., Zhou, C., Fan, G. et al. Pump-laser-wavelength dependence of population inversion in N2+. Physical Review A, 2024, 109(1): 013518. DOI:10.1103/PhysRevA.109.013518.
Zhang, Y., Gao, Y., Lei, H. et al. Free-space competition between gain-swept superradiance and spontaneous emission from N2+ in a femtosecond filament. Physical Review A, 2024, 109(1): 013105. DOI:10.1103/PhysRevA.109.013105.
Zhang, Y., Gao, Y., Lei, H. et al. Free-space competition between gain-swept superradiance and spontaneous emission from N2+ in a femtosecond filament. Physical Review A, 2024, 109(1): 013105. DOI:10.1103/PhysRevA.109.013105.
Jiang, G.-S., Wang, Y.-T., Liu, Q. et al. Methane gas sensor based on a novel dual-path multipass cell. Microwave and Optical Technology Letters, 2024, 66(1): e33794. DOI:10.1002/mop.33794.
Jiang, G.-S., Wang, Y.-T., Liu, Q. et al. Methane gas sensor based on a novel dual-path multipass cell. Microwave and Optical Technology Letters, 2024, 66(1): e33794. DOI:10.1002/mop.33794.
Chen, W., Qiao, S., Zhao, Z. et al. Sensitive carbon monoxide detection based on laser absorption spectroscopy with hollow-core antiresonant fiber. Microwave and Optical Technology Letters, 2024, 66(1): e33780. DOI:10.1002/mop.33780.
Chen, W., Qiao, S., Zhao, Z. et al. Sensitive carbon monoxide detection based on laser absorption spectroscopy with hollow-core antiresonant fiber. Microwave and Optical Technology Letters, 2024, 66(1): e33780. DOI:10.1002/mop.33780.
Li, R.-S., He, Y.-S., Dang, H.-T. et al. Localization degree of 4f electrons in Ce3Pb intermetallic compound: A DFT + DMFT study. Microwave and Optical Technology Letters, 2024, 66(1): e33765. DOI:10.1002/mop.33765.
Li, R.-S., He, Y.-S., Dang, H.-T. et al. Localization degree of 4f electrons in Ce3Pb intermetallic compound: A DFT + DMFT study. Microwave and Optical Technology Letters, 2024, 66(1): e33765. DOI:10.1002/mop.33765.
Xia, F., Wang, B., Zhang, F. et al. Analysis of atmospheric turbulence and vibration impact on the performance of satellite–ground laser communication beam. Microwave and Optical Technology Letters, 2024, 66(1): e33719. DOI:10.1002/mop.33719.
Xia, F., Wang, B., Zhang, F. et al. Analysis of atmospheric turbulence and vibration impact on the performance of satellite–ground laser communication beam. Microwave and Optical Technology Letters, 2024, 66(1): e33719. DOI:10.1002/mop.33719.
Liu, P., Sun, W., Liu, H. et al. Investigation on the saturable absorption characteristics of GeNS and its application to harmonic mode-locked modulation. Microwave and Optical Technology Letters, 2024, 66(1): e33722. DOI:10.1002/mop.33722.
Liu, P., Sun, W., Liu, H. et al. Investigation on the saturable absorption characteristics of GeNS and its application to harmonic mode-locked modulation. Microwave and Optical Technology Letters, 2024, 66(1): e33722. DOI:10.1002/mop.33722.
Xing, J., Li, Y., Cui, S. The spectral-voltage calibration technology of multispectral pyrometers based on Gauss–Newton-genetic algorithm method for nonsource temperature regions. Microwave and Optical Technology Letters, 2024, 66(1): e33715. DOI:10.1002/mop.33715.
Xing, J., Li, Y., Cui, S. The spectral-voltage calibration technology of multispectral pyrometers based on Gauss–Newton-genetic algorithm method for nonsource temperature regions. Microwave and Optical Technology Letters, 2024, 66(1): e33715. DOI:10.1002/mop.33715.
Huang, Y., Fu, W., Yang, S. et al. Highly sensitive measurement of trace methane gas using mid-infrared tunable diode laser absorption spectroscopy method. Microwave and Optical Technology Letters, 2024, 66(1): e33701. DOI:10.1002/mop.33701.
Huang, Y., Fu, W., Yang, S. et al. Highly sensitive measurement of trace methane gas using mid-infrared tunable diode laser absorption spectroscopy method. Microwave and Optical Technology Letters, 2024, 66(1): e33701. DOI:10.1002/mop.33701.
Liu, X., Ma, Y. New temperature measurement method based on light-induced thermoelastic spectroscopy. Optics Letters, 2023, 48(21): 5687-5690. DOI:10.1364/OL.503287.
Liu, X., Ma, Y. New temperature measurement method based on light-induced thermoelastic spectroscopy. Optics Letters, 2023, 48(21): 5687-5690. DOI:10.1364/OL.503287.
Zhang, H., Yu, Y., Bi, S. et al. The intra-cavity QEPAS sensor using fiber-ring laser for C2H2 and CO2 detection. Microwave and Optical Technology Letters, 2023, 65(11): 3021-3026. DOI:10.1002/mop.33808.
Zhang, H., Yu, Y., Bi, S. et al. The intra-cavity QEPAS sensor using fiber-ring laser for C2H2 and CO2 detection. Microwave and Optical Technology Letters, 2023, 65(11): 3021-3026. DOI:10.1002/mop.33808.
Yang, H., Xue, Q., Lu, F. et al. Detection of microplastic samples based on spatial heterodyne microscopic differential Raman spectroscopy. Journal of Raman Spectroscopy, 2023, 54(10): 1090-1098. DOI:10.1002/jrs.6563.
Yang, H., Xue, Q., Lu, F. et al. Detection of microplastic samples based on spatial heterodyne microscopic differential Raman spectroscopy. Journal of Raman Spectroscopy, 2023, 54(10): 1090-1098. DOI:10.1002/jrs.6563.
Zhang, X., Lu, Q., Mei, H. et al. Standoff detection of an electric field by bidirectional nitrogen lasing. Physical Review A, 2023, 108(3): 033513. DOI:10.1103/PhysRevA.108.033513.
Zhang, X., Lu, Q., Mei, H. et al. Standoff detection of an electric field by bidirectional nitrogen lasing. Physical Review A, 2023, 108(3): 033513. DOI:10.1103/PhysRevA.108.033513.
Yan, B., Li, D., Zhang, L. et al. Filamentation of femtosecond vortex laser pulses in turbulent air. Optics and Laser Technology, 2023. DOI:10.1016/j.optlastec.2023.109515.
Yan, B., Li, D., Zhang, L. et al. Filamentation of femtosecond vortex laser pulses in turbulent air. Optics and Laser Technology, 2023. DOI:10.1016/j.optlastec.2023.109515.
Zeng, T., Yi, Y., Guo, L. Multifilament Array Generation and Control with a Four-petal Gaussian Femtosecond Laser Beam | [基 于 四 瓣 高 斯 飞 秒 激 光 的 多 丝 阵 列 产 生 与 调 控]. Guangzi Xuebao/Acta Photonica Sinica, 2023, 52(7): 0752310. DOI:10.3788/gzxb20235207.0752310.
Zeng, T., Yi, Y., Guo, L. Multifilament Array Generation and Control with a Four-petal Gaussian Femtosecond Laser Beam | [基 于 四 瓣 高 斯 飞 秒 激 光 的 多 丝 阵 列 产 生 与 调 控]. Guangzi Xuebao/Acta Photonica Sinica, 2023, 52(7): 0752310. DOI:10.3788/gzxb20235207.0752310.
Zhang, N., Xie, H., Zhang, H. et al. Electronic-Resonance-Enhanced Coherent Raman Spectroscopy with a Single Femtosecond Laser Beam. Laser and Photonics Reviews, 2023, 17(6): 2300020. DOI:10.1002/lpor.202300020.
Zhang, N., Xie, H., Zhang, H. et al. Electronic-Resonance-Enhanced Coherent Raman Spectroscopy with a Single Femtosecond Laser Beam. Laser and Photonics Reviews, 2023, 17(6): 2300020. DOI:10.1002/lpor.202300020.
Liu, H., Xie, H., Li, G. et al. Destructive interference in N+2 lasing. Optics Express, 2023, 31(11): 17609-17618. DOI:10.1364/OE.488389.
Liu, H., Xie, H., Li, G. et al. Destructive interference in N+2 lasing. Optics Express, 2023, 31(11): 17609-17618. DOI:10.1364/OE.488389.
Wu, S., Zhong, X., Qu, Z. et al. Infrared Gas Detection and Concentration Inversion Based on Dual-Temperature Background Points. Photonics, 2023, 10(5): 490. DOI:10.3390/photonics10050490.
Wu, S., Zhong, X., Qu, Z. et al. Infrared Gas Detection and Concentration Inversion Based on Dual-Temperature Background Points. Photonics, 2023, 10(5): 490. DOI:10.3390/photonics10050490.
Li, R.-S., Zheng, X.-H., Dang, H.-T. et al. Ce 4f electronic spectrum function in Ce3Al intermetallic compound studied via a many-body method. Microwave and Optical Technology Letters, 2023, 65(5): 1386-1392. DOI:10.1002/mop.33564.
Li, R.-S., Zheng, X.-H., Dang, H.-T. et al. Ce 4f electronic spectrum function in Ce3Al intermetallic compound studied via a many-body method. Microwave and Optical Technology Letters, 2023, 65(5): 1386-1392. DOI:10.1002/mop.33564.
Liu, Q.-S., Ma, M.-J., Lv, C. et al. Component identification of subsurface food additives by spatially offset Raman spectroscopy. Microwave and Optical Technology Letters, 2023, 65(5): 1433-1438. DOI:10.1002/mop.33620.
Liu, Q.-S., Ma, M.-J., Lv, C. et al. Component identification of subsurface food additives by spatially offset Raman spectroscopy. Microwave and Optical Technology Letters, 2023, 65(5): 1433-1438. DOI:10.1002/mop.33620.
Huang, J., Zhou, W., Zhu, J. et al. Rapid detection and identification of rocks and minerals by laser-induced breakdown spectroscopy. Microwave and Optical Technology Letters, 2023, 65(5): 1439-1447. DOI:10.1002/mop.33622.
Huang, J., Zhou, W., Zhu, J. et al. Rapid detection and identification of rocks and minerals by laser-induced breakdown spectroscopy. Microwave and Optical Technology Letters, 2023, 65(5): 1439-1447. DOI:10.1002/mop.33622.
Shi, Z., Sun, X., Xun, J. et al. A diode-pumped SnS2 passively Q-switched Tm-doped pulsed laser. Microwave and Optical Technology Letters, 2023, 65(5): 1415-1420. DOI:10.1002/mop.33595.
Shi, Z., Sun, X., Xun, J. et al. A diode-pumped SnS2 passively Q-switched Tm-doped pulsed laser. Microwave and Optical Technology Letters, 2023, 65(5): 1415-1420. DOI:10.1002/mop.33595.
Zhang, M., Chen, C., Chen, H. et al. Investigation on small volume and long optical path multipass cell using differential evolution algorithm. Microwave and Optical Technology Letters, 2023, 65(5): 1372-1378. DOI:10.1002/mop.33554.
Zhang, M., Chen, C., Chen, H. et al. Investigation on small volume and long optical path multipass cell using differential evolution algorithm. Microwave and Optical Technology Letters, 2023, 65(5): 1372-1378. DOI:10.1002/mop.33554.
Gong, P., Wang, Y., Er, Z. et al. Integration and thermal management of multiwavelength distributed feedback quantum cascade lasers. Microwave and Optical Technology Letters, 2023, 65(5): 1366-1371. DOI:10.1002/mop.33553.
Gong, P., Wang, Y., Er, Z. et al. Integration and thermal management of multiwavelength distributed feedback quantum cascade lasers. Microwave and Optical Technology Letters, 2023, 65(5): 1366-1371. DOI:10.1002/mop.33553.
He, Q., Chang, J., Li, M. et al. Oxygen detection based on Faraday modulation spectroscopy and wavelength modulation spectroscopy: A comparison. Microwave and Optical Technology Letters, 2023, 65(5): 1353-1358. DOI:10.1002/mop.33540.
He, Q., Chang, J., Li, M. et al. Oxygen detection based on Faraday modulation spectroscopy and wavelength modulation spectroscopy: A comparison. Microwave and Optical Technology Letters, 2023, 65(5): 1353-1358. DOI:10.1002/mop.33540.
Yan, H., Wu, T., Xu, W. et al. Brillouin shift and temperature measurement by spontaneous Rayleigh-Brillouin scattering profiles using different models. Microwave and Optical Technology Letters, 2023, 65(5): 1346-1352. DOI:10.1002/mop.33500.
Yan, H., Wu, T., Xu, W. et al. Brillouin shift and temperature measurement by spontaneous Rayleigh-Brillouin scattering profiles using different models. Microwave and Optical Technology Letters, 2023, 65(5): 1346-1352. DOI:10.1002/mop.33500.
Shen, F., Hu, X., Lu, J. et al. Design of an all hollow fiber-coupled middle infrared laser heterodyne radiometer (LHR). Microwave and Optical Technology Letters, 2023, 65(5): 1324-1330. DOI:10.1002/mop.33484.
Shen, F., Hu, X., Lu, J. et al. Design of an all hollow fiber-coupled middle infrared laser heterodyne radiometer (LHR). Microwave and Optical Technology Letters, 2023, 65(5): 1324-1330. DOI:10.1002/mop.33484.
Xu, P., Qian, Y., Wang, B. et al. Research and analysis of voids in semiconductor laser diode packaging reflow soldering. Microwave and Optical Technology Letters, 2023, 65(5): 1339-1345. DOI:10.1002/mop.33488.
Xu, P., Qian, Y., Wang, B. et al. Research and analysis of voids in semiconductor laser diode packaging reflow soldering. Microwave and Optical Technology Letters, 2023, 65(5): 1339-1345. DOI:10.1002/mop.33488.
Zhou, W., Wan, E., Tian, D. et al. In situ detection of spices with medicinal value based on laser-induced breakdown spectroscopy. Microwave and Optical Technology Letters, 2023, 65(5): 1331-1338. DOI:10.1002/mop.33485.
Zhou, W., Wan, E., Tian, D. et al. In situ detection of spices with medicinal value based on laser-induced breakdown spectroscopy. Microwave and Optical Technology Letters, 2023, 65(5): 1331-1338. DOI:10.1002/mop.33485.
Xiao, A., Zheng, J., Wu, X. et al. Ultrasensitive Detection and Cellular Photothermal Therapy via a Self-Photothermal Modulation Biosensor. Advanced Optical Materials, 2023, 11(8): 2202711. DOI:10.1002/adom.202202711.
Xiao, A., Zheng, J., Wu, X. et al. Ultrasensitive Detection and Cellular Photothermal Therapy via a Self-Photothermal Modulation Biosensor. Advanced Optical Materials, 2023, 11(8): 2202711. DOI:10.1002/adom.202202711.
Mei, H., Zhang, X., Santiago, L. et al. Erasing of the Free Induction Decay by Incoherent Ionization Injection | [非相干电离注入导致自由感应衰变信号的擦除效应]. Guangzi Xuebao/Acta Photonica Sinica, 2023, 52(4): 0414001. DOI:10.3788/gzxb20235204.0414001.
Mei, H., Zhang, X., Santiago, L. et al. Erasing of the Free Induction Decay by Incoherent Ionization Injection | [非相干电离注入导致自由感应衰变信号的擦除效应]. Guangzi Xuebao/Acta Photonica Sinica, 2023, 52(4): 0414001. DOI:10.3788/gzxb20235204.0414001.
Chen, Y., Liang, T., Qiao, S. et al. A Miniaturized 3D-Printed Quartz-Enhanced Photoacoustic Spectroscopy Sensor for Methane Detection with a High-Power Diode Laser. Sensors, 2023, 23(8): 4034. DOI:10.3390/s23084034.
Chen, Y., Liang, T., Qiao, S. et al. A Miniaturized 3D-Printed Quartz-Enhanced Photoacoustic Spectroscopy Sensor for Methane Detection with a High-Power Diode Laser. Sensors, 2023, 23(8): 4034. DOI:10.3390/s23084034.
Wang, Z., Ma, Y., Yuan, B. et al. Development of Laser Processing Carbon-Fiber-Reinforced Plastic. Sensors, 2023, 23(7): 3659. DOI:10.3390/s23073659.
Wang, Z., Ma, Y., Yuan, B. et al. Development of Laser Processing Carbon-Fiber-Reinforced Plastic. Sensors, 2023, 23(7): 3659. DOI:10.3390/s23073659.
Zhang, C., Qiao, S., Ma, Y. Highly sensitive photoacoustic acetylene detection based on differential photoacoustic cell with retro-reflection-cavity. Photoacoustics, 2023. DOI:10.1016/j.pacs.2023.100467.
Zhang, C., Qiao, S., Ma, Y. Highly sensitive photoacoustic acetylene detection based on differential photoacoustic cell with retro-reflection-cavity. Photoacoustics, 2023. DOI:10.1016/j.pacs.2023.100467.
Liu, Y., Ma, Y. Advances in multipass cell for absorption spectroscopy-based trace gas sensing technology [Invited]. Chinese Optics Letters, 2023, 21(3): 033001. DOI:10.3788/COL202321.033001.
Liu, Y., Ma, Y. Advances in multipass cell for absorption spectroscopy-based trace gas sensing technology [Invited]. Chinese Optics Letters, 2023, 21(3): 033001. DOI:10.3788/COL202321.033001.
Tian, Z., Zhao, H., Gao, Y. et al. Temperature measurement utilizing the vibrational CARS signal from the ground level X2ςg+of N2+in high-temperature flames. Applied Physics Letters, 2023, 122(7): 071102. DOI:10.1063/5.0139296.
Tian, Z., Zhao, H., Gao, Y. et al. Temperature measurement utilizing the vibrational CARS signal from the ground level X2ςg+of N2+in high-temperature flames. Applied Physics Letters, 2023, 122(7): 071102. DOI:10.1063/5.0139296.
Li, X., Huang, X., Hu, X. et al. Recent progress on mid-infrared pulsed fiber lasers and the applications. Optics and Laser Technology, 2023. DOI:10.1016/j.optlastec.2022.108898.
Li, X., Huang, X., Hu, X. et al. Recent progress on mid-infrared pulsed fiber lasers and the applications. Optics and Laser Technology, 2023. DOI:10.1016/j.optlastec.2022.108898.
Pei, H., Jing, L., Tong, Z. et al. Layout and optimization of LED light source for indoor visible light communication. Microwave and Optical Technology Letters, 2023, 65(2): 710-716. DOI:10.1002/mop.33538.
Pei, H., Jing, L., Tong, Z. et al. Layout and optimization of LED light source for indoor visible light communication. Microwave and Optical Technology Letters, 2023, 65(2): 710-716. DOI:10.1002/mop.33538.
Wang, Q., Ding, P., Wilkins, S.G. et al. Theoretical treatment on externally-seeded superradiance from N2+ in femtosecond laser filamentation in low-pressure nitrogen. Frontiers in Physics, 2023. DOI:10.3389/fphy.2022.1090346.
Wang, Q., Ding, P., Wilkins, S.G. et al. Theoretical treatment on externally-seeded superradiance from N2+ in femtosecond laser filamentation in low-pressure nitrogen. Frontiers in Physics, 2023. DOI:10.3389/fphy.2022.1090346.
Che, X., Yang, K., Li, J. et al. Measurement of permanganate index in water using hand-held fluorescence spectrometer. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.3002256.
Che, X., Yang, K., Li, J. et al. Measurement of permanganate index in water using hand-held fluorescence spectrometer. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.3002256.
Wang, C., Xie, J., Zhuang, R. et al. Highly Sensitive Carbon Dioxide Gas Sensor Based on 2 μm Laser Diode and Herriott Multi-pass Absorption Cell(Invited) | [基于 2 μm 激光二极管和 Herriott 多光程吸收池的高灵敏二氧化碳气体传感器(特邀)]. Guangzi Xuebao/Acta Photonica Sinica, 2023, 52(10): 1052406. DOI:10.3788/gzxb20235210.1052406.
Wang, C., Xie, J., Zhuang, R. et al. Highly Sensitive Carbon Dioxide Gas Sensor Based on 2 μm Laser Diode and Herriott Multi-pass Absorption Cell(Invited) | [基于 2 μm 激光二极管和 Herriott 多光程吸收池的高灵敏二氧化碳气体传感器(特邀)]. Guangzi Xuebao/Acta Photonica Sinica, 2023, 52(10): 1052406. DOI:10.3788/gzxb20235210.1052406.
Cao, J., Fu, Y., Wang, T. et al. Air-laser-based coherent Raman spectroscopy of atmospheric molecules in a filamentary plasma grating. Optics Letters, 2023, 48(16): 4308-4311. DOI:10.1364/OL.496658.
Cao, J., Fu, Y., Wang, T. et al. Air-laser-based coherent Raman spectroscopy of atmospheric molecules in a filamentary plasma grating. Optics Letters, 2023, 48(16): 4308-4311. DOI:10.1364/OL.496658.
Ma, Y., Liang, T., Qiao, S. et al. Highly Sensitive and Fast Hydrogen Detection Based on Light-Induced Thermoelastic Spectroscopy. Ultrafast Science, 2023. DOI:10.34133/ultrafastscience.0024.
Ma, Y., Liang, T., Qiao, S. et al. Highly Sensitive and Fast Hydrogen Detection Based on Light-Induced Thermoelastic Spectroscopy. Ultrafast Science, 2023. DOI:10.34133/ultrafastscience.0024.
Liu, X., Qiao, S., Han, G. et al. Highly sensitive HF detection based on absorption enhanced light-induced thermoelastic spectroscopy with a quartz tuning fork of receive and shallow neural network fitting. Photoacoustics, 2022. DOI:10.1016/j.pacs.2022.100422.
Liu, X., Qiao, S., Han, G. et al. Highly sensitive HF detection based on absorption enhanced light-induced thermoelastic spectroscopy with a quartz tuning fork of receive and shallow neural network fitting. Photoacoustics, 2022. DOI:10.1016/j.pacs.2022.100422.
Gong, W., Hu, J., Wang, Z. et al. Recent advances in laser gas sensors for applications to safety monitoring in intelligent coal mines. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1058475.
Gong, W., Hu, J., Wang, Z. et al. Recent advances in laser gas sensors for applications to safety monitoring in intelligent coal mines. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1058475.
Liu, M., Duan, P., Shafi, M. et al. Surface-enhanced Raman spectroscopic activity study on topological ZnSe nanostructures. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1057992.
Liu, M., Duan, P., Shafi, M. et al. Surface-enhanced Raman spectroscopic activity study on topological ZnSe nanostructures. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1057992.
Xing, H., Su, Y., Gao, Y. et al. A novel mode-division (de)multiplexer with degenerate modes output for MIMO-FREE applications. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1056639.
Xing, H., Su, Y., Gao, Y. et al. A novel mode-division (de)multiplexer with degenerate modes output for MIMO-FREE applications. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1056639.
Xue, Q., Li, H., Lu, F. et al. Underwater hyperspectral imaging system for deep-sea exploration. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1058733.
Xue, Q., Li, H., Lu, F. et al. Underwater hyperspectral imaging system for deep-sea exploration. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1058733.
Wang, S., Gong, W., Wang, Z. et al. Interference fringe suppression in tunable diode laser absorption spectroscopy based on CEEMDAN-WTD. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1057519.
Wang, S., Gong, W., Wang, Z. et al. Interference fringe suppression in tunable diode laser absorption spectroscopy based on CEEMDAN-WTD. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1057519.
Che, X., Tian, Z., Sun, F. et al. Research on chemical oxygen demand based on laser Fluorescence-Raman spectroscopy. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1055049.
Che, X., Tian, Z., Sun, F. et al. Research on chemical oxygen demand based on laser Fluorescence-Raman spectroscopy. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1055049.
Zhou, W., Xu, Z., Cui, W. et al. Optimized CT-TDLAS reconstruction performance evaluation of least squares with the polynomial-fitting method. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1036179.
Zhou, W., Xu, Z., Cui, W. et al. Optimized CT-TDLAS reconstruction performance evaluation of least squares with the polynomial-fitting method. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1036179.
Xu, L., Lu, Q., Tikhonchuk, V.T. et al. Quantum and quasi-classical effects in the strong field ionization and subsequent excitation of nitrogen molecules. Optics Express, 2022, 30(21): 38481-38491. DOI:10.1364/OE.469492.
Xu, L., Lu, Q., Tikhonchuk, V.T. et al. Quantum and quasi-classical effects in the strong field ionization and subsequent excitation of nitrogen molecules. Optics Express, 2022, 30(21): 38481-38491. DOI:10.1364/OE.469492.
Guo, S., Yang, Y., Shao, G. et al. Correcting the light extinction effect of fly ash particles on the measurement of NO by TDLAS. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1020376.
Guo, S., Yang, Y., Shao, G. et al. Correcting the light extinction effect of fly ash particles on the measurement of NO by TDLAS. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1020376.
Liu, Z., Li, H., Zhang, Z. Sagnac ring and photonic crystal fiber structure refractive index sensor with high birefringence and low temperature sensitivity. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1028856.
Liu, Z., Li, H., Zhang, Z. Sagnac ring and photonic crystal fiber structure refractive index sensor with high birefringence and low temperature sensitivity. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.1028856.
Qi, P., Qian, W., Guo, L. et al. Sensing with Femtosecond Laser Filamentation. Sensors, 2022, 22(18): 7076. DOI:10.3390/s22187076.
Qi, P., Qian, W., Guo, L. et al. Sensing with Femtosecond Laser Filamentation. Sensors, 2022, 22(18): 7076. DOI:10.3390/s22187076.
Tian, Z., Zhao, H., Gao, Y. et al. Filamentation-based, two-beam, 1-kHz, and single-shot N2vibrational CARS thermometry in high-temperature flames. Applied Physics Letters, 2022, 121(8): 081102. DOI:10.1063/5.0103285.
Tian, Z., Zhao, H., Gao, Y. et al. Filamentation-based, two-beam, 1-kHz, and single-shot N2vibrational CARS thermometry in high-temperature flames. Applied Physics Letters, 2022, 121(8): 081102. DOI:10.1063/5.0103285.
Liang, T., Qiao, S., Liu, X. et al. Highly Sensitive Hydrogen Sensing Based on Tunable Diode Laser Absorption Spectroscopy with a 2.1 μm Diode Laser. Chemosensors, 2022, 10(8): 321. DOI:10.3390/chemosensors10080321.
Liang, T., Qiao, S., Liu, X. et al. Highly Sensitive Hydrogen Sensing Based on Tunable Diode Laser Absorption Spectroscopy with a 2.1 μm Diode Laser. Chemosensors, 2022, 10(8): 321. DOI:10.3390/chemosensors10080321.
Liu, X., Ma, Y. Tunable Diode Laser Absorption Spectroscopy Based Temperature Measurement with a Single Diode Laser Near 1.4 μm. Sensors, 2022, 22(16): 6095. DOI:10.3390/s22166095.
Liu, X., Ma, Y. Tunable Diode Laser Absorption Spectroscopy Based Temperature Measurement with a Single Diode Laser Near 1.4 μm. Sensors, 2022, 22(16): 6095. DOI:10.3390/s22166095.
Fu, Y., Cao, J., Yamanouchi, K. et al. Air-Laser-Based Standoff Coherent Raman Spectrometer. Ultrafast Science, 2022. DOI:10.34133/2022/9867028.
Fu, Y., Cao, J., Yamanouchi, K. et al. Air-Laser-Based Standoff Coherent Raman Spectrometer. Ultrafast Science, 2022. DOI:10.34133/2022/9867028.
0
Views
0
Downloads
0
CSCD
0
Scopus
Publicity Resources
Related Articles
Related Author
Related Institution